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Abstract

Free vibration analysis of functionally graded material (FGM) cylindrical shells with holes was studied in this paper. The

variational equation was founded firstly, and the unified displacement mode-shape function of the shells with various

boundary conditions was put forward then. The general analytical expressions of natural frequency and mode-shape

solutions given by functional variation and characteristic value analysis, which can be applied to FGM cylindrical shells

with holes of arbitrary functionally graded distribution along the thickness direction and different boundary conditions.

Non-dimensional frequencies of shell with holes of different shape, number, location were given in the end of this paper.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The functionally graded material (FGM) is a new kind of composite material developed recently in which
the material property graded distribution is formed by the composition of different material media in variant
proportion in space, so as to meet the requirements of material properties for different parts of a member. In
the meanwhile, as each part of the material of structure varies in continuous way, there is more advantage of
the material properties than ordinary laminated and composed ones. Such kind of composite material
composed non-uniformly and continuously in structure by different materials in desired way makes
development of material stride forward towards a higher level [1].

The design idea of FGM, which was firstly proposed by Japanese scientists in the 1980s last century, was
mainly used to meet the specific requirements of material properties in advanced science region of national
defense. Though the original research of FGM was begun on releasing thermal stresses, the idea was gradually
applied to the research and conception of other functional materials which are widely used and developed in
some other important regions such as aerospace, energy sources, electron, chemical engineering, optical
materials, biological engineering, etc. In recent years, more attention from international academic circles is
paid to FGM and its structures [2]. And the development of FGM in various regions has been doing in
succession by scientists of Japan, American, Russia, Germany, England, Switzerland, Finland, Ukraine, etc.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The research work on FGM was started as a specific functional material of aerospace engineering. Its
development period is not long. Therefore, more attention of study was paid to thermal stresses [3–8], crack
[9], optimizing design [10], etc. Still much remains to be done, as many weak links exist in different fields of
mechanics, infact, even in static and dynamic analyses of ordinary structural members [11]. Besides, the
parameters of FGM are related to spatial coordinates, and the correspondent dominant equations are of
variable coefficient, and therefore, it is very difficult to find analytic solution directly. Semi-analytical method
[12] and numerical method [13–14] such as finite element method are used to solve these problems. In analytic
research field of FGM, there are quite a lot of challenging research projects. Up till now, several methods, such
as laminated model method [15], asymptotic approach [16], 3-D analysis method [17], simplified model
technique [18], etc, are mainly applied to the analyses of FGM plate and shell structures. As the mathematics
involved is difficult, the analytic solutions can only be obtained for some specific functional gradient functions
and very limited kind of boundary conditions, usually for plate problems which are not concerned with shells
with holes [19].

Free vibration analysis of FGM cylindrical shells with holes was studied in this paper. The variational
equation was founded firstly, and the unified displacement mode-shape function of the shells with various
boundary conditions was put forward then. The general analytical expressions of natural frequency and mode-
shape solutions were given by functional variation and characteristic value analysis, which can be applied to
FGM cylindrical shells with holes of arbitrary functionally graded distribution along the thickness direction
and different boundary conditions.
2. Basic variational equations

2.1. Geometrical equations

According to the theory of shells [20,21], the strain–displacement relations of FGM cylindrical shell in
cylindrical coordinates are the same as homogeneous one, namely (Fig. 1)
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shell strain:

�x ¼ �
0
x þ zwx; �y ¼ �

0
y þ zwy; �xy ¼ �

0
xy þ zwxy, (1c)

where u, v, w are the displacement components in the middle plane along the axial, circumferential and normal
directions, respectively.
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Fig. 1. FGM cylindrical shell.
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2.2. Physical equations

According to the sz, exz and eyz assumptions of shell theory, stress–strain relations are given by considering
the continuous change of material properties of FGM shell along the thickness direction:

sx ¼
EðzÞ

1� m2ðzÞ
½�x þ mðzÞ�y�; sy ¼

EðzÞ

1� m2ðzÞ
½�y þ mðzÞ�x�; txy ¼ GðzÞ�xy. (2)

2.3. Deformation energy

According to the assumption of shell theory, the specific energy is

W ¼ 1
2
ðsx�x þ sy�y þ txy�xyÞ.

Substituting Eqs. (1) and (2) into the above equation, W can be expressed as
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where, membrane stiffness:
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bending stiffness:
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membrane–bending coupled stiffness:
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in which, h is the thickness of shell. The deformation energy can be obtained as follows:
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where the integration is calculated along the middle plane AH of cylindrical shell with hole. Substituting the
mid-plane strain expressions (1a) and (1b) into the above equation, the deformation energy can be expressed
by the mid-plane displacements.

Deformation energy of the FGM cylindrical shell involves three portions, first portion and second portion
of Eq. (4a) are the membrane strain energy and the bending strain energy, respectively; and the third portion is
the membrane–bending coupled strain energy, which is special property of FGM shells.

2.4. Kinetic energy

The kinetic energy of FGM shell can be expressed as

T ¼
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in which, qu=qt, qv=qt, qw=qt are the velocities in three directions and the surface mass density is

rh ¼

Z h=2

�ðh=2Þ
rðzÞdz. (3d)

2.5. Variational equation

According to Hamilton’s principle, when the transverse load qðx; y; tÞ acts on the surface, the displacement
variational equation can be obtained as

d
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q dwRdxdy dt ¼ 0: (5a)

The free vibration variational equation is

d
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3. Free vibration of FGM cylindrical shells with holes under different boundaries

Assuming uðx; y; tÞ ¼ Uðx; yÞsinðotþ jÞ, vðx; y; tÞ ¼ V ðx; yÞsinðotþ jÞ, wðx; y; tÞ ¼W ðx; yÞsinðotþ jÞ,
substituting the above expressions into Eqs. (1a) and (1b) firstly, then substituting them into Eqs. (4a),
(4b), (5b), and integrating along ot ¼ 0�2p, the modal variational equation can be given as
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For the closed cylindrical shells, two end boundary conditions can be chosen in the following:

fixed boundary : u ¼ v ¼ yx ¼ w ¼ 0, (7a)

free boundary : Nx ¼ Txy ¼Mx ¼ Vx ¼ 0, (7b)

simple boundary : Nx ¼ v ¼Mx ¼ w ¼ 0, (7c)

where Nx, Mx, yx, Txy, Vx is membrane force, moment, rotational angel, membrane shearing force, transverse
shearing force, respectively [16]. Then mode-shape function can be taken as

Uðx; yÞ ¼ Amn

dXmðxÞ

dðx=LÞ
cos ny, (8a)

V ðx; yÞ ¼ BmnXmðxÞ sin ny ðm; n ¼ 1; 2; 3; . . .Þ, (8b)

W ðx; yÞ ¼ CmnXmðxÞ cos ny. (8c)

In which, XmðxÞ is the mth order modal function of the beam with corresponding axial boundary conditions
of shell [16]; Amn, Bmn, Cmn are the unknown modal coefficients.

Substituting modal function (8) into the variational equation (6), getting through variational calculus, the
homogeneous algebraic equations about Amn, Bmn, Cmn can be given as

ða1O2 � S11Þ S12 S13

S21 ða2O2 � S22Þ S23

S31 S32 ða3O2 � S33Þ


















Amn

Bmn

Cmn

8><
>:

9>=
>; ¼ 0f g. (9)

In order to solve its non-zero solution, the determinant of coefficient must be zero, the frequency equation
can be obtained as

O6 þ aO4 þ bO2 þ c ¼ 0, (10a)

where

a ¼ �
S11

a1
þ
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a2
þ
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� 	
, (10b)
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þ
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þ
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þ
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þ

S2
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� 	
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c ¼ ½S11S23S32 þ S22S13S31 þ S33S12S21 þ 2S12S23S31 � S11S22S33�=a1a2a3 (10d)

and non-dimensional frequency:

O2 ¼
rh

K
R2o2 (11)

coefficients of equations:
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L

� 	2

a6, (12a)
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KxyRþ Cxyn
2
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S22 ¼ 1þ 2
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� 	
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� 	
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in which, the modal parameters are:

a1 ¼ L

Z Z
AH

ðX0mÞ
2
ðcos nyÞ2 dxdy, (13a)

a2 ¼
1

L

Z Z
AH

ðXmÞ
2
ðsin nyÞ2 dxdy, (13b)

a3 ¼
1

L

Z Z
AH

ðXmÞ
2
ðcos nyÞ2 dxdy, (13c)

a4 ¼ L

Z Z
AH

ðX0mÞ
2
ðsin nyÞ2 dxdy, (13d)

a5 ¼ L

Z Z
AH

ðXmX
00
mÞðcos nyÞ2 dxdy, (13e)

a6 ¼ L3

Z Z
AH

ðX00mÞ
2
ðcos nyÞ2 dxdy (13f)

and X 0mðxÞ, X 00mðxÞ are the first- and second-order derivate, respectively. Eq. (10a) is a cubic algebraic equation
about O2, its three roots can be solved as

O2
imn ¼ �

1

3
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 3b
p

cos gþ
2p
3
ði � 1Þ

� �
þ a

� 
ði ¼ 1; 2; 3Þ (14a)

in which

g ¼
1

3
cos�1

a3 � 4:5abþ 13:5c

ða2 � 3bÞ3=2

" #
. (14b)

Substituting Oimn into Eq. (9), the corresponding ratio of Ai
mn, Bi

mn, Ci
mn can be solved, then substituting

them back into Eqs. (8), and the corresponding natural mode-shapes can be obtained. The natural frequency
solutions of FGM cylindrical shells with holes under different boundaries can be uniformly expressed as

oi
mn ¼

Oimn

R

ffiffiffiffiffiffi
K

rh

s
i ¼ 1; 2; 3

m; n ¼ 1; 2; 3 . . .

 !
. (15)

Here, K is given in Eq. (3a); rh is given in Eq. (3d); R is the radius of cylindrical shell; the solution of Oimn

is given in Eqs. (14), in which, a, b and c is given in Eqs. (10); Sij and akðk ¼ 1�6Þ of Eqs. (10) are given in
Eqs. (12) and (13), respectively. According to different graded distribution of the materials, the stiffness
parameters K, Kxy, KG, C, Cxy, CG, D, Dxy and DG of Eqs. (12) can be solved by Eqs. (3a) and (3b).

4. Examples

Following examples are the FGM shells with simply supported ends, namely the modal function is
X mðxÞ ¼ sin mp=L

� �
x. Gradient functions are as follows:

EðzÞ ¼ Ef e
�ðlE=RÞðzþðh=2ÞÞ; mðzÞ ¼ mf e

�ðlm=RÞðzþðh=2ÞÞ; GðzÞ ¼ Gf e
�ðlG=RÞðzþðh=2ÞÞ. (16)
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where Ef, mf, Gf are material parameters in shell surface; lE, lm, lG are corresponding gradients of parameters.
A gradient group is assumed in following examples (mf ¼ 0.3), gradient values and corresponding stiffness are
shown in Table 1. Substituting modal function into Eqs. (13a)–(13f), a1–a6 can be obtained, and non-
dimensional frequency are given by solving Eq. (10a).

Example 1. Fundamental frequency coefficient versus aperture ratio of FGM shell with middle square hole.

Hole and shell sizes are shown in Fig. 2. In this example: d1 ¼ d2; e ¼ 0, aperture ratio is defined as:
b ¼ d2/R. Fig. 3 are curves of fundamental frequency coefficient versus aperture ratio of different shells. It
shows that the curve pattern is different for different shells. For slender shell (a), the shell with bigger hole has
the less frequency; and the tubby shell (c) are reverse. For middle case (b), frequency is first reduced and
increased then.

Example 2. Fundamental frequency coefficient versus radius–span ratio of FGM shell with middle square
hole.

In this example, h:R ¼ 1:20; b ¼ 0.5. Curves of O111 versus Z ¼ R/L are shown in Fig. 4, which shows that
O111 is larger when Z is larger.
Table 1

Gradients and corresponding stiffness

Gradient group Membrane stiffness Bending stiffness Membrane–bending coupled stiffness

lE
h
R

lm h
R

lG
h
R

K/Efh Kxy/Efh KG/Gfh D/Efh
3 Dxy/Efh

3 DG/Gfh
3 C/Efh

2 Cxy/Efh
2 CG/Gfh

2

2.0 0.5 1.0 0.463 0.118 0.608 0.0436 0.0117 0.0543 �0.0745 �0.0229 �0.0520
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0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

h: R: L = 1: 20: 100

Ω
11

1

Ω
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β ββ
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0.31224
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h: R: L = 1: 20: 75
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Fig. 3. Fundamental frequency coefficient versus aperture ratio.
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Fig. 2. Cylindrical shell with hole.
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Example 3. High-frequency coefficients versus radius–span ratio of FGM shell with middle square hole.

In this example, h:R ¼ 1:20; b ¼ 0.4. Curves of O1mn versus Z are shown in Fig. 5, where m ¼ 1 and
n ¼ 1,2,3,4. Table 2 gives the value of O1mn and n of the lowest frequency (same Z). For the shorter shell (larger
Z) and the same m, O1mn is not always increasing with n.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h: R = 1: 20

β = 0.5

Ω
11

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
η

Fig. 4. Cuver of O111�Z.

Table 2

High-frequency coefficient with ratio of radius and span of middle square hole

O1mn Z

m n 0.05 0.1 0.2 0.3 0.4 0.5 0.6

1 1 0.0164 0.0614 0.2030 0.3680 0.5250 0.6550 0.7500

2 0.0361 0.0417 0.0870 0.1670 0.2640 0.3650 0.4610

3 0.1010 0.1020 0.1120 0.1390 0.1830 0.2410 0.3070

4 0.1930 0.1950 0.2000 0.2120 0.2320 0.2600 0.2980

n of lowest frequency n ¼ 1 n ¼ 2 n ¼ 2 n ¼ 3 n ¼ 3 n ¼ 3 n ¼ 4

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ω
1

m
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
η

Fig. 5. Cuver of O1mn�Z.
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Example 4. Fundamental frequency coefficient versus offsetting span ratio of FGM shell with offset square
hole.

In this example, h:R:L ¼ 1:20:60; b ¼ 0.4, curves of O111 versus g ¼ e/L are shown in Fig. 6. the largest O111

is obtained when hole is in the middle.

Example 5. Fundamental frequency coefficient versus length–width ratio of FGM shell with middle
rectangular hole.

In this example, h:R:L ¼ 1:20:100; b ¼ 0.4, length–width ratio of hole is defined as: fp ¼ d2/d1, which d2
and d1 are circumferential and axial length of hole, respectively. Fig. 7 shows the relation of O111�fp. O111 is
increasing with fp.

Example 6. Fundamental frequency coefficient of FGM shell with multi-holes.

In this example, h:R:L ¼ 1:20:30, d2/R ¼ 0.06, d1/L ¼ 0.1. When the holes distributed along circumferential
or axial directions, the values of O111 are shown in Table 3. O111 is increasing with axial hole number.
0 0.1 0.2 0.3 0.4

0.4215

0.4216

0.4217

0.4218

0.4219

0.422

0.4221

e/L

h: R: L = 1: 20: 60

β = 0.4

Ω
1

1
1

Fig. 6. Curves of O111�g.
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p

Ω
1
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1

Fig. 7. Curves of O111�fp.
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0.3247

0.3248
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0.3250

0.3251

0.3252

0.3253
Ω

1
1

1

Hole number

Fig. 8. Fundamental frequency coefficient of the shell with multi-holes.

Table 3

Fundamental frequency coefficient of the shell with multi-holes

Hole number Circumferential 1 1 1 1 1 1 2 3 4 5

Axial 1 2 3 4 5 1 1 1 1 1

O111 0.32466 0.32473 0.32481 0.32489 0.32498 0.32466 0.32484 0.32479 0.32521 0.32501

C. Zhi-yuan, W. Hua-ning / Journal of Sound and Vibration 306 (2007) 227–237236
Fig. 8 shows the corresponding point l (black point in Fig. 8), but when hole number is even and holes
distributed along circumferential, O111 is larger than odd number holes (triangle point in Fig. 8).

5. Conclusions
(1)
 The FGMs shells were used in the aerospace engineering mostly. Holes with various shapes and numbers
must be opened in order to satisfy the demand of engineering. In addition, the dynamic characters of
structures are the important and necessary data for the design of spacecraft. The study of dynamic
characters of functionally graded cylindrical shells with holes is very important and necessary, but few
research is developed in this field.
(2)
 The general expression (15) and (14) of natural frequencies of functionally graded cylindrical shells with
hole can be applied in the structures with arbitrary holes (An is the middle plane of shell with arbitrary
holes in Eqs. (13)), various boundary conditions (different boundary of Xm(x) in Eqs. (8)), various orders
(i, m, n in Eq. (15)), and arbitrary graded distributions along the thickness direction (arbitrary E(z), m(z),
G(z) in Eqs. (3)).
(3)
 The influence of radius–span ratio, aperture ratio, offsetting, length–width ratio of hole, and numbers of
holes on the natural frequency of functionally graded cylindrical shells is given by the numerical analyses,
the conclusion can be supplied to the engineering design.
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